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WEEK 8 RELATIONSHIPS BETWEEN VARTABLES

AIMS

To introduce the idea of as#‘ac:bﬁon between variables and describe some methods
of assessing and measuring the strength of any such association. In particular to
examine the use of scatterplots and correlation coefficients. To contrast a
measure of agreement with measures of association. To introduce the idea of the
regression model, par‘ricular}hy linear and logistic regression.

OBJECTIVES

At the end of this Unit you lshould be able to:

e Explain what is meant by\ the term "association”.

» Draw a scatterplot (scarter'gram) and assess qualitatively the strength and
direction of any association between the variables.

e Explain and interpret bofh Pearson's and Spearman’s correlation coefficient
values and judge their significance.

e Choose the correlation n%easure most appropriate for any given set of data.

e Explain the difference bk‘rween association and agreement and be able to
describe the principle behind kappa.

e Outline the shorTcoming‘js of correlation particularly in the context of
causation. |

« Describe the basic idea ¢ nderlying linear regression analysis, and correctly
interpret the significance of the results from a linear regression analysis.

o Explain the property of <jud justment.

o Explain the principal dif%erence between linear and logistic regression.

|
Reading: Bland: Sections 11.9; Section 11.10 (last two paragraphs only); Section
12.4 (ignore equations and concentrate on testing the significance of the
coefficient, towards the en%i of the section).

or Bowers-2: Chapter 8 (igA\or‘e the computer application sections).


written by David Bowers, Leeds University "Working with Data - an introduction to medical statistics"
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Introduction

Up to now we have focussed on the application of descriptive and inferential
statistics to a single variable. For example, the variable "bone mineral density” and
how it differs between two groups of women (Figure 7.1), or the variable "stump
pain” and how it differs between placebo and treatment groups (Figure 6.5). The
methods we have used so far are, not surprisingly, known as univariable statistics.

In this unit we turn to ways of investigating connections between fwo (or more)
variables. For obvious reasons such methods of analysis are known collectively as
multivariable statistics. We want to focus on two multivariable procedures,
correlati d regression. The former proced us to describe th
"strength and direction of the association between two varigbles, and assumes no.
ausaljty. By this we mean that changes in the value of either variable do not
necessarily lead to or cause changes in the other variable - simply that the two
variables seem to move fogether in some way. In regression analysis we do assume

that changes in one variable are caused by changes in one or more other variables.

We ion analysis to bsequently analyse such situations. We

will start with the concept of association.

o—

Measuring association

When we describe two variables as being "associated” we mean that the variables
show some sort of connection. For example, high values of one variable tend
generally to be associated with high values of another variable and low values with
low values. For example, cigarette smoking and coffee consumption. This form of
association is said to be positive.

Alternatively, we may find that high values of one variable tend generally to be
associated with /ow values of the other and vice versa. For example, wine
consumption and annual income. This form of association is said to be negative,

Scatterplots

In situations where we are interested in exploring a possible connection between
two variables, it is nearly always useful to produce a scatterplot of the data (also
known as scattergrams or scatter diagrams). It doesn't matter which variable is
plotted on which axis if we are only interested in exploring possible association
between the two variables. (Note however, that if we are examining a causal
model, i.e. where one variable depends on another, the dependent variable is
plotted on the y or vertical axis, the "causing” variable on the x or horizontal axis).
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If any association exists be'rl&veen the two variables it will usually be possible to
discern a "pattern” in the scatter of points. For example, the points may appear to
scattered around an imaginary straight line or around a regular curve. The closer
the scatter is to the straight line or curve, the closer the association between the
variables. In the case of a straight line scatter, if the scatter slopes upwards
from left to right this is indicative of a positive association, if down from left to
right, of a negative association.” No discernible pattern indicates (probably) weak
or no association. The strength of any association is judged by how close to some
imaginary straight line the points lie.

Figure 8.1 shows a scatter pld;ﬁ' of % mortality from aortic aneurysm and number
of hospital episodes per year in 18 UK hospitals. This scatter, which slopes down
from left to right, indicates moderate negative association. Hospitals which have
recorded a higher number of}episodes experience a lower mortality rate, and vice
versa. It would be possible Tb draw an imaginary straight line through these points
although most of the points would not lie particularly close to it. In fact, there is
some evidence of a “curvy” association.

% Mortality

el Lo LN
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Episodes/year

Fig3 Relation between volume and outcome for aortic
aineurysin

Figure 8.1 Scatterplot df % mortality from aortic aneurysm and annual
number of episodes treated by 18 UK hospitals. Quality in
Health Care,? 4, 1995.

As a further example Figure P.Z shows a scatterplot of body mass index as
reported by patients and as measured in a clinic. This scatter reveals a strong
positive association. Notice H\ow closely to the straight line the points lie,

" We are not interested here in “curvjy' patterns which may be indicative of a non-linear (not a straight-
line) association, the implications of which we cannot deal with in this course.
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indicative of a strong linearassociation.
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Figure 1. Scatter plot. Estimated BMI: using patient reported data.
Measured BMI: using staiometer and scales.

Figure 8.2 Scatterplot of patient reported and clinic measured body mass
index. British J of General Practice, 48, 1998.

Q. 8.1 Figure 8.3 is a scatterplot of suicide rate and the use of calcium channel
blockers from a cross-section study across 152 Swedish municipalities. (a)
Comment on the direction and strength of any association between the two
variables; (b) The authors had a causal relationship in mind. What do you think it

was?
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Fig 1 Correlation between rates of use of calcium channel blockers
and rates of suicide in 152 Swedish municipalities

Figure 8.3 Scatterplot of suicide rate and the use of calcium channel
blockers in 152 Swedish municipalities. BMJ, 316, 1998.
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Correlation coefficients

A scatter plot can only give us a qualitative idea of the strength of an association
between two variables. Howé}ver, a single quantitative measure of linear
association is provided by the correlation coefficient. That is, it is a measure of
how close the points come to lying exactly on a straight line. A correlation
coefficient can take any valué from -1 to +1. Negative values mean a negative
association, positive values a jposiﬁve association. The closer the value is to -1 or
+1, the stronger the association. A value close to zero indicates that the two
variables have a weak or no association.

In practice we use sample data to calculate the value of the sample correlation
coefficient with which we caﬁh estimate the population correlation coefficient,
usually designated p (pronounced ro), and calculate confidence intervals for it.
There are a number of different correlation coefficients, but we have space only
to consider the two most widely encountered in the clinical literature - Pearson's
product moment correlation coefficient r and Spearman’s rank order correlation
coefficient rs.

Pearson's product moment correlation coefficient

Pearson's correlation coefficient is the most widely used measure of correlation,
Tt measures the strength of linear association between two metric variables. This
measure is really only vm the data is metric continuous and approximately
Normally distributed, but in i?r‘ac‘rice this requirement is not usually applied too
stringently. However, if the data is not continuous and Normal (for example, if
there are outliers) then the estimated correlation coefficient may be misleading
and caution is required in interpreting the results. We can calculate a confidence
interval for the true population correlation coefficient or perform a hypothesis
test onit.

Q. 8.2 The table in Figure 8.4 is from a study into the medical record validation
of maternally reported bir‘l‘h}charac‘rerisfics and pregnancy-related events among
the mothers of children attending a child cancer clinic. The table shows the
Pearson correlation between bes'raﬁonal age, as reported by the mother and as
recorded in medical records, for a number of specific demographic subgroups
(ignore the last column). Wh#ch estimated correlation appears to be: (a) the
strongest? Is it positive or r}uegaﬁve? (b) The weakest? (c) Which correlation
coefficient is estimated the most precisely? The least precisely? Explain. (d) Do
you think the association between gestational age as recorded by the mother and



from medical records is effected by the birth order of the child in question?
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Explain.
TABLE 3. Validity and reliability of gestational age within
specific demographic subgroupings among participating
members from a United States and Canadian cooperative
clinical trials group and matched controls, 1983-1988
Corrzl'ation
8
gestational 96% CI* s:?xzpucf
age
All gestational ages 0.839 0.817-0.859 0.62
Casa/control status
Cases 0.849 0.813-0.878 0.63
Controls 0.835 0.805-0.861 0.61
Education
<High school 0.694 0.553-0.797 0.51
High school 0.833 0.790-0.868 0.63
>High school 0.835 0.804-0.861 0.62
Household income
<$22,000 0.791 0.734-0.837 0.59
$22,000-$34,999 - 0.882 0.849-0.908 0.62
2$35,000 0.843 0.800-0.877 0.65
Unknown 0.745 0.641-0.823 0.60
Time (years) trom
delivery 10 interview
<2 4 0896  0.862-0.921 064
2-3.9 0.821 0.784-0.852 0.63
459 0.828 0.775-0.869 0.61
6-8 0.852 0.734-0.920 0.42
Maternal age (years)
<25 0.822 0.773-0.861 0.64
25-29 0.889 0.862-0.912 0.63
30-34 0.760 0.694-0.813 0.57
235 0.888- 0.824-0.930 0.64
Birth order
First born ~0.880) 0.853-0.903 0.67 —
Second bom 0.815 0.778-0.846 0.57
2Third born 0632 0.416-0.781 0.52
Maternal race
White 0.846 0.822-0.866 0.64
Other 0.782 0.680-0.855 0.42
* Cl, confidenca interval.
t Three catagories, <38, 38—41, 242 weeks.
Figure 8.4  The correlation coefficients of gestational age, as

reported by the mother and as recorded in medical records,
for a number of specific demographic subgroups in a child-
cancer study. Amer J Epidemiology, 145, 1997.



Spearman’s rank correlation coefficient
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If the data for either or bdfh of the variables, although metric continuous,
cannot be said to be approx\lma'rely Normally distributed, or if it is metric
discrete or ordinal, then Smear'mans correlation coefficient (denoted ry) is
appropriate. Essentially it q‘lpproximafes Pearson's coefficient by applying the
same calculation to the sample data after it has first been ranked.

Q. 8.3 Figure 8.5 shows Sbearman’s correlation coefficients between breast

size and a number of other factors, according to oral contraceptive use, from a
study into endogenous hormone levels and oral contraceptive use. The subjects
were Swedish female university students. Amer J of Epidemiology, 45, 1997.

(a) Identify the type of the seven variables in the table with which breast size
is correlated, and suggest Tbe most appropriate correlation coefficient for each.
(b) With which variable, in which group, is breast size most strongly and
significantly associated? Aﬂd the most weakly associated? What directions are
these associations? The p-values in the table are to test the null hypothesis
that the true, population, cdr'rela'rlon coefficient is zero. (c) With which
variable(s) is breast size no{t significantly associated among those who have
never used oral contraceptives? Explain.

TABLE 6. Spearman rank correlations (r ) between breast sizes in heaithy Swedish female university students, according
to oral contraceptive use and body mass fndex height, weight, family history of breast cancer, age at menarche, and age,

1993-1994+
N e . Oral contraceptive uss . . .
Novq'uuu [N Former users Al nonusers ; Current users
(n = 20) o (n= 20) (n = 40) (n=25)
o P T P A P s p

Body mass indext ‘ 047 7' 0.038 0.71 <0.001 (.53 <0.001 0.27 0.196
Height 025 0.286 042 0.068 0.32 0.046 -0.06 0.783
Weight 0.47 0.037 055 0.011 0.50 0.001 0.24 0.248
Family history of breast

cancer in a first or :

sacond degree relative -0.17 0.473 ~0.41 0.071 -0.24 0.131 0.01 0.951
Age at menarche ~0.23 0.329 0.03 0.889 -0.06 0.735 -0.08 0.707
Waisthip ratio -0.00 | 0.985 0.35 0.133 0.18 0.256 0.25 0.226
Age 0.09 i 0.718 -0.20 0.396 -0.04 0.814 0.15 0.480

* Values from measurements taken dunnd menstrual cycle days 5-10 were used.

1 Weight (kg)/height (m)2.

Figure 8.5 Spearman’s correlation coefficient between breast size and a
number of ofhkr factors, from a study into endogenous
hormone levels and oral contraceptive use.

45, 1997.

Amer J of Epidem,
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Q. 8.4 Figure 8.6 shows a scattergram of % body fat against age for a sample
of 18 healthy male adults aged between 23 and 61. (a) The sample Pearson
correlation coefficient (with its p-value) is one of the following. Which one and
why?

(i) - 0.790 (0.043); (ii) 0.425 (0.079); (iii) - 0.13 (0.048): (iv) 0.99 (0.001)

(b) Is the Pearson correlation coefficient an appropriate measure of association
for these data?

(c) Could we predict the likely % body fat for a person aged 35 knowing only the
value of the correlation coefficient between % body fat and age? Explain your
answer.
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Figure 8.6 Scatterplot of % body fat versus age for 18 healthy male
adults

When you use a correlation coefficient you should bear in mind three principal
limitations:

o It only measures linear association. Thus even if the data is clustered very
closely to a curve, a calculated correlation coefficient may show little or no
association.
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o It is sensitive to sample ijsize - the bigger the sample the bigger the
correlation coefficient. for‘ example you might find that with a sample size
of 100 the p-value for a ﬁparﬁcular correlation coefficient is 0.08, whereas
with a sample of 200, the p-value is 0.04, and this is not simply because a
bigger sample is probably more representative of the population.

e It cannot be used for prédicfion purposes, since it offers no information of a
causal nature.

Association and agreement

One further point is worth r{‘mking. Association is not the same as agreement.
Association measures the degree to which two sets of values tend to move
together. Agreement measdres the degree to which the values are actually the
same. Two variables can be closely associated without their values necessary
agreeing. To illustrate the c*ifference, suppose a trainee paramedic assesses
the Glasgow Coma Scale scof;Pe of 10 RTA patients”. His supervisor
simultaneously scores the same patients. Their scores are:

Patient 1 2 3 4 5 6 7 8 9 10

Trainee 5 9 3 7 8 5 4 9 7 5
Supervisor 4 10 2 5 9 4 2 8 6 5

We can see that when the S|L|pervisor' scores high the trainee also tends to score
high. When the supervisor scores low the trainee tends to score low. The two
sets of scores are strongly d‘md positively associated. Pearson's r = + 0.950, with
a p-value of < 0.000, so the association is highly significant. However only one
score out of the ten (or 10°/Q+) agree exactly, so agreement is very poor. And
don't forget that we would have expected them to agree by chance on a few of
them anyway, even if they had to take a wild guess without even seeing the

patients.

"The Glasgow Coma Scale (from Oto 16) is used to assess the seriousness of head injury, such as
those sustained in a road traffic accident (RTA). Scoring system is: 13-15 = mild injury; 9-12 =
moderate injury; < 8 = severe injury
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Kappa

What we need is a measure which adjusts the observed agreement for the
number of agreements which are due to chance alone. This is what Cohen's
kappa (written as k) does. Kappa measures the proportion of scores which agree
(i.e. fall in the same category) adjusted for the proportion which could be
expected to agree by chance. Kappa is properly known as the chance-corrected
proportional agreement statistic.

Kappa can vary between O (no agreement) and 1 (perfect agreement). Values of
kappa may be assessed with the help of the table below. Only values for kappa of
about 0.60 or more indicate good agreement.

13 Strength of
agreement
<0.20 poor
0.21-0.40 fair
0.41-0.60 moderate
0.61-0.80 good
0.81-1.00 very good

Assessing agreement with kappa

Strictly speaking Kappa is a measure of agreement between two nomina/
variables, but many problems can be "nominalised”. For example, since a score of
< 8 is a critical cut-off point in the Glasgow Coma Scale, let's transform the 6CS
data in the table above into scores of < 8 (labeled S for Serious) or > 9 (labeled
NS for Not-serious). The revised table below shows the result.

Patient 1 2 3 4 5 6 7 8 9
10

Trainee S NS § § S S S Ns s
S
Supervisor S NS S S NS § S S 5
S
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Now we can see that 7 out qf the 10 scores agree, an apparent agreement level
of 70%. However, when expected agreement is taken into account, Kappa equals
38%, so agreement is still only.

It is possible to calculate cJ}nfidence intervals for kappa, which enables some
estimate of its precision to pe made. In general, variables which are found to be
firmly associated will usually show good agreement, and vice versa, although,
since this is not invariably the case, the methods are not interchangeable and
correlation should not be used as a proxy for agreement.

One limitation of kappa is that it is sensitive to the proportion of subjects in

each category, in other word;is, to prevalence. The consequence of this is that
kappas from different studies should not be compared if the prevalences are
not the same.

Q. 8.5 Figure 8.4 above, shows not only the correlation for gestational age as
recalled by mother and from medical records, for a number of demographic sub-
groups, it also gives the value of the kappa statistic for the degree of
agreement between the two gestational ages for the same sub-groups. (a)
Which sub-group displays, (i) the best agreement; (ii) the worst agreement. (b)
Does the sub-group with the highest correlation also have the highest value of
kappa? |

Regression analysis
Linear regression

If clinical researchers wish to analyse causal relationships between variables
they commonly turn to the féchniques of regression analysis. The most popular
is perhaps the /ogistic regression model but we will start here with the linear
regression model. since the basic ideas are more than likely already familiar to
you.

Suppose we believe that agei and % body fat are related in such a way that
increases in age bring about or cause increases in body fat. Moreover the
relationship is /inear, i.e. a scatterplot of the points would show the sample
values scattered around a sﬁraighf line. The implications of this are that an
increase in age of one year whether from 20 to 21 or from 63 to 64, brings
about the same increase in ?L body fat. Note that although inspection of the
scatterplot in Figure 8.6 suggests that the association between the two
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variables is positive, it doesnot provide any evidence about the possibility of a
causal relationship between them. The causal nature of any relationship is
established prior to any analysis and is based on historical observation, biological
processes, considerations of plausible cause and effect, theoretical
developments, insight based on practice, and so on.

We can format this linear relationship as an equation:
7% body fat = 1+ 2 x Age

This should be familiar to you from GCSE Maths as the equation of a straight
line, where B; is the intersect coefficient and B is the slope coefficient. This
equation is known as the linear regression equation. The variable on the left-
hand side of the equation is referred to as the outcome or dependent variable,
and must be continuous metric and Normally distributed. The variable on the
right-hand side is known as the /independent or explanatory variable or the
factor, and can be of any type.

If there really is a causal relationship between body fat and age (the question
the researchers wish to address) then Bz has to have a non-zero value. If it was
0, then it wouldn't matter what value age took, once it was multiplied by O it
would disappear from the equation and could have no influence on body fat.

So the job of the researcher is, first to estimate the values of the two
coefficients using the sample data, and second to assess the significance of B2
using a confidence interval or hypothesis test. If either the confidence interval
for B2 includes O or the p-value for B2 is = 0.05, then changes in age do not
effect % body fat (see Units 6 and 7).

If we apply a suitable computer program to the age/body fat data it is easy
enough to calculate B1 and B2 to be 16.334 and 0.349 respectively. The
estimated regression equation is thus

% body fat = 16334 + 0.349 x Age

The constant coefficient By is of little interest and is usually ignored. For Bz the
computer also calculates a p-value of 0.079 together with a 95% confidence
interval of (-0.045 to 0.742). On both counts B is not statistically significant
and, from this data anyway, we would conclude that age did not influence body
fat, and thus that there was no relationship between the two variables. The
regression line is shown plotted through the data in Figure 8.7.
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Figure 8.7 Estimated Iine{?:r regression line between % body fat and age for
18 healthy adults.

Q. 8.6 If two groups of shbjecfs are one year apart in mean age, how much
more % body fat will the older of the two have on average (assuming the
relationship is statistically significant)? What is this value?

In practice, regression equdfions will contain more than variable on the right
hand side and these may be a mixture of nominal ordinal and metric.

As an example, Figure 8.8 |§ from a study into the effect of chronic
hypertension in women on Tﬁeir risk of producing small-for-gestational-age
babies.

The 2185 subjects were r‘e&r‘uited from five pre-natal clinics in France between
August 1991 and May 1993. The table reports the results of a linear regression
analysis, in which the dependen’r variable is birthweight (g). The independent
variables are a mixture of cbnfmuous, ordinal and nominal variables. The table
also provides, for each indeﬁendenf variable, its estimated coefficient value, B,
the associated p-value, and the standard error SE (see Unit 6 for a note on
standard error as a measuré of the preciseness of the estimate - smaller is
better).
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TABLE 3. Effect of chronic hypertension on mean birth
weight values, multiple linear regression (n = 1,938), France,

1991-1993
Chronic hypertension (yes vs. no) -161 £ 48 0.0009 -
Smoking (yes vs. no) -113+24 <0.00001
Weight at initial visit (kg) 8x1  <0.00001 -
Mother’s height (cm}) 922  <0.00001
Age (years) 122 0.76
Multiparous (yes vs. no) 120+ 21  <0.00001
Ethnic group of origin "
North African vs. Westemn
European 108 + 37 0.004
Sub-Saharan African vs. Westem
European -140 £ 52 0.007

Other origin vs. Western European 19 = 33 0.56
Educational level
Primary school or below vs.

university —43 + 31 0.16
Secondary schoot vs. university 65+ 25 0.008
Technical school vs. university -50 + 33 0.13

* g8, partial regression coefficients adjusted for the other
predictors and gestational age at delivery.
1 SE, standard error.

Figure 8.8 Results from a linear regression analysis into the effects of
chronic hypertension in mothers on the birthweight of their
babies according to a number of risk factors (the independent
variables. The dependent variable is mean birthweight (g).
Amer J of Epidemiology, 145, 1997.

Q. 8.7 (a) Which variables are significant influences on mean birthweight? (b)
By how much and in what direction does having chronic hypertension have on
mean birthweight? (c) What is the average difference in birthweight of babies
with mothers who smoke compared to babies whose mothers don't smoke? (d) If
two otherwise similar mothers differ in weight at initial visit by 1kg, who's baby
is likely to be heavier and by how much?

One very attractive feature of the regression model is that it measures the
effect of each independent variable on the dependent variable after adjusting
for the influence any other variable(s) might have. For example, in the
birthweight study above, mothers' Height and Weight are likely to be closely
linked, so that a change in either brings about an associated change in the other,
and hence a change in birthweight. The idea is illustrated in the Venn diagram
below. It is difficult therefore to disentangle their separate effects on
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Birthweight. However, this is what the regression analysis achieves. So the
value of 8 for the mothers’ Weighf coefficient in Figure 8.8 measures the "pure”
effect of a change in a mothers' Weight on the change in Birthweight, after any
contribution made by the Height variable has been eliminated.

Birthweight

Another reason for the enthusiasm of clinical researchers for the regression
model is that it enables what is called the confounding problem to be addressed.
You will learn about confounding elsewhere so it will not be discussed any
further here.

Logistic regression

In the linear regression modiel described above, the dependent variable is
required to be metric continuous and Normally distributed. In clinical research,
the dependent or outcome variable is more often dichotomous, i.e. it can only
take two possible values, for example, alive or dead, malignant or benign, case or
control, treated with active drug, treated with placebo, and so on. These two
states are usually scored as O and 1. If we wish to apply regression analysis to
such studies we need to turn to the logistic regression model. The maths of
this is somewhat more complicated than that for the linear regression model, so
we cannot do much more than give a brief summary here .

The most popular use of Iogik’ric regression analysis is to determine odds ratios
for risk factors. We have already seen an example of this in Unit 5. The cross-
section study from which Fi#ure 5.3 is taken (reproduced here for convenience
as Figure 8.9) uses a sample of 890 women aged 18 to 35 to investigate possible
risk factors for genital chlamydia. The odds ratios and their 95% confidence
intervals shown in the table are produced directly by a computer logistic
regression analysis in which the outcome variable is "Has genital chlamydia (No =

" For the mathematically minded thé logistic regression equation is Y = g0+ P1xx1+ 8202+ ...)
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0, Yes = 1)". The independent risk factors are the variables shown in the table,
e.g. age, marital status, number of partners, etc. The numeric values of the
coefficients are not of as much interest in logistic regression as they are in
linear regression and are not usually shown.

Table 2 Demographic and behavioural characteristics of 879*
women participating in study--comparison of those positive for
chiamydia infection with those negative for infection

% {No) of women

Risk factor with positive result Ddds ratio
Age group (n=848):
€20 10.6 (9/85) 8.64 (2.28 to 32.8)
21-25 38 {87210) 2.80 (0.76 t0 11.0)
26-30 0.9 (3331) 0.67 {0.13 to 3.34)
=3 14 (3222) 1
Marital status (na822):
Married 0.6 (1170 0.19 (0.02 to 1.45)
Cohabiting 3.1 (8/260) 1.00 (0.41 to 2.49)
Single 3.1 (12/392) : 1
No of partners in past year (n=812):
[¥] 1.7 (11/630) 1
22 49 (9/182) 283 (1.19 to 7.18)
One or more naw partners in past 3 months (n=782).,
No 24 (16671} - 1
Yes a5 E) 1.93 (0.69 to 5.38)
Ever had sexually transmitted diseass (n=818):
No 2.3 {14/616) 1
“Yes T 35(1R02) 154 (0.61 to 3.88)
Ever had termination of pregnancy (n=831):
No o 2.6 (15/575) 1
Yes ) 2.7 (T1256) 1.05 (0.42 to 2.61)
Genltourinary symptoms at present (n=807);
. e
Yes 77T T 32(ine0) 133 (05310 298)

*Total is not always 879 owing to missing data.

Figure 8.9 Results from a logistic regression analysis. The dependent
variable is genital chlamydia. The logistic regression model is
used because it produces odds ratios for each independent risk
factor - as shown here. BMJ, 315, 1997.

The regression model is one of a family of statistical methods known collectively
as multivariable models. Other examples are proportional and Poisson
regression models, which we cannot consider here. In all of these there is only
one outcome variable. A second important class of methods embraces what is
known as the multivariate models. In these models there may be more than one
dependent variable. Examples are factor analysis, principal component analysis,
and cluster analysis. We cannot consider these any further either.
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Unit 8 hela'rionships between variables
' Solution to examples

Q. 8.1 (a) The association dj:ppear's to be positive but not particularly strong.
(b) That it is differences in jevels of calcium channel blockers prescribed in
various municipalities that are the cause of differences in suicide levels. In
municipalities with low prescribing rates, the suicide rate is also generally low,
and vice versa. |

Q. 8.2 (a) That for women who gave birth less than two years ago; is positive, r
= 0.896; |

(b) That for women whose child was > third born, r = 0.632.

(c) The most precise is that Mi?h the narrowest confidence interval, i.e. that
for all gestational ages, whose 95% confidence interval is (0.817 to 0.859). The
least precise is that with the widest confidence interval, i.e. that where the
child is > third born, whose 95% confidence interval is (0.416 to 0.781).

(d) Yes, because the correla‘}ion between maternally reported gestational age
and medical record reported gestational age gets weaker as the child in question
goes from being the first born (0.880), to being second born (0.815), to being >
third born (0.632).

Q. 8.3 (a) All are metric cafnﬁnuous except Family history of breast cancer in
1st or 2nd degree relative (which is nominal). All except family history are
therefore appropriate for Pearson's r. The fact that the authors used
Spearman's rg suggests that }They had doubts about the Normality of the
distribution of the data and played safe. The Family history data does not lend
itself to either Pearson's r ojf‘ Spearman’s rs since this data will be nominal
(yes/no). Most appropriate \kvould be the point-biserial correlation coefficient.
This is well suited to the siw;.lafion where one variable is metric continuous and
the other dichotomous, as here, but space permits nothing further on this.

(b) the strongest correlation of breast size is with body mass index among
"Former users”, r = + 0.71, péivalue < 0.001; the weakest is with Waist/hip ratio
among "Never users”, r = 0.00, p-value = 0.985; (c) height, family history, age at
menarche, waist/hip ratio, and age (all p-values > 0.05); only bmi and weight have
significant correlations with breast size.

Q. 8.4 (a) Correct answer iis (ii). The association is definitely positive, which
rules out (i) and (iii). Also it|is not very strong - the points don't cluster
narrowly around any imaginar;"y straight line - this rules out (iv) which represents
a very strong association.

(b) Yes, since age and % blo&d fat are both metric continuous - we have to
assume that both are N distributed.
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(c) No. Knowing that age = 35 and r = 0.425 does not enable us to predict %
body fat. For that we would need a causal relationship equation.

Q. 8.5 (a) Agreement between maternally reported and clinical recorded
gestational age is (i) highest for mothers whose first child this was (k = 0.67);
(i) worst for both mothers for whom the birth of the child in question was
between 6-8 years ago, and for mothers whose race is recorded as Other, k =
0.42 for both.

(b) Highest correlation between maternal and clinic values of gestational age is
0.896 - where time since birth of child in question is < 2 years, although
agreement is relatively good (k = 0.64), it is not the best, as we know from the
answer to (a)(i) above.

Q. 8.6 The older person will on average have 0.349% more body fat than the
younger. This is the same as the value of the age coefficient in the regression
equation above. Inother words, the size of this coefficient is the value the
dependent variable will increase by when the independent variable increases by
one unit of measurement. Since Age is measured in units of 1 year, its
coefficient measures the increase (or decrease if the coefficient is negative) in
% body fat for a one-year increase in age.

Q. 8.7 (a) All except Age: Other origin v. Western European; Primary school
education only compared to university education; and Technical school education
compared to university education (all p-values > 0.05).

(b) We get the answer from the first row of the table, which shows that women
with chronic hypertension have babies with a mean birthweight 161g lower than
non-hypertensive women.

(c) On average babies with smoking mothers have a birthweight 113g lighter.

(e) The heavier woman's baby will be 8g heavier than the lighter woman's baby.



